High-order, finite-volume methods in mapped coordinates

Autor: Phillip Colella, Jeffrey Hittinger, Daniel F. Martin, M. R. Dorr
Rok vydání: 2011
Předmět:
Zdroj: Journal of Computational Physics. 230:2952-2976
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2010.12.044
Popis: We present an approach for constructing finite-volume methods for flux-divergence forms to any order of accuracy defined as the image of a smooth mapping from a rectangular discretization of an abstract coordinate space. Our approach is based on two ideas. The first is that of using higher-order quadrature rules to compute the flux averages over faces that generalize a method developed for Cartesian grids to the case of mapped grids. The second is a method for computing the averages of the metric terms on faces such that freestream preservation is automatically satisfied. We derive detailed formulas for the cases of fourth-order accurate discretizations of linear elliptic and hyperbolic partial differential equations. For the latter case, we combine the method so derived with Runge-Kutta time discretization and demonstrate how to incorporate a high-order accurate limiter with the goal of obtaining a method that is robust in the presence of discontinuities and underresolved gradients. For both elliptic and hyperbolic problems, we demonstrate that the resulting methods are fourth-order accurate for smooth solutions.
Databáze: OpenAIRE