Property $$P_{naive}$$ P naive for acylindrically hyperbolic groups

Autor: Carolyn R. Abbott, François Dahmani
Rok vydání: 2018
Předmět:
Zdroj: Mathematische Zeitschrift. 291:555-568
ISSN: 1432-1823
0025-5874
DOI: 10.1007/s00209-018-2094-1
Popis: We prove that every acylindrically hyperbolic group that has no non-trivial finite normal subgroup satisfies a strong ping pong property, the $$P_{naive}$$ property: for any finite collection of elements $$h_1, \dots , h_k$$ , there exists another element $$\gamma \ne 1$$ such that for all i, $$\langle h_i, \gamma \rangle = \langle h_i \rangle * \langle \gamma \rangle $$ . We also show that if a collection of subgroups $$H_1, \dots , H_k$$ is a hyperbolically embedded collection, then there is $$\gamma \ne 1$$ such that for all i, $$\langle H_i, \gamma \rangle = H_i * \langle \gamma \rangle $$ .
Databáze: OpenAIRE