A Robust Numerical Method for a Singularly Perturbed Fredholm Integro-Differential Equation
Autor: | Gabil M. Amiraliyev, Muhammet Enes Durmaz |
---|---|
Rok vydání: | 2021 |
Předmět: |
General Mathematics
Numerical analysis 010102 general mathematics MathematicsofComputing_NUMERICALANALYSIS Type (model theory) 01 natural sciences 010101 applied mathematics Integro-differential equation Homogeneous Scheme (mathematics) ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Applied mathematics 0101 mathematics Mathematics |
Zdroj: | Mediterranean Journal of Mathematics. 18 |
ISSN: | 1660-5454 1660-5446 |
Popis: | In this paper, we deal with a fitted second-order homogeneous (non-hybrid) type difference scheme for solving the singularly perturbed linear second-order Fredholm integro-differential equation. The numerical method represents the exponentially fitted scheme on the Shishkin mesh. Numerical example is presented to demonstrate efficiency of proposed method. |
Databáze: | OpenAIRE |
Externí odkaz: |