Design of a CW linac for the Compact Intense Fast NEutron Facility

Autor: Pingping Gan, Q.Y. Tan, Zhijie Wang, Shuai Liu, M. J. Easton, Kun Zhu, Hang Li, Yuanrong Lu, Z.Y. Guo
Rok vydání: 2019
Předmět:
Zdroj: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 930:156-166
ISSN: 0168-9002
DOI: 10.1016/j.nima.2019.03.086
Popis: The proposed Compact Intense Fast NEutron Facility (CIFNEF) will have a wide range of applications, including the investigation of the exotic structure of neutron-rich nuclei, data for the nuclear fission , and the simulation of the neutron field in a star. To satisfy aims of producing high-intensity fast neutrons and forward neutrons with very low environmental background, the CIFNEF linac should have the capacity of accelerating continuous wave (CW) deuteron (D + ), hydrogen ( H 2 + ) and lithium (7Li 3 + ) beams to 2.5 MeV/u with maximum beam currents of 10 mA, 5 mA and 10 uA, respectively. Based on the above requirements, we proposed a novel compact linac using a combination of RFQ and DTL structures. The dynamics of RFQ and DTL are completed to meet all requirements and start-to-end simulation results show that the three ion species can be accelerated to the final energy with transmission efficiency above 99% as well as good beam quality with lower emittance growth. In addition, we performed error sensitivity analysis and combined error study to evaluate the error tolerance limits of the obtained design.
Databáze: OpenAIRE