Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints
Autor: | Cosmin G. Petra, Roummel F. Marcia, Johannes J. Brust |
---|---|
Rok vydání: | 2019 |
Předmět: |
Trust region
Mathematical optimization 021103 operations research Control and Optimization Scale (ratio) Applied Mathematics 0211 other engineering and technologies Structure (category theory) 010103 numerical & computational mathematics 02 engineering and technology 01 natural sciences Computational Mathematics Broyden–Fletcher–Goldfarb–Shanno algorithm Convergence (routing) 0101 mathematics Variety (universal algebra) Representation (mathematics) Mathematics |
Zdroj: | Computational Optimization and Applications. 74:669-701 |
ISSN: | 1573-2894 0926-6003 |
DOI: | 10.1007/s10589-019-00127-4 |
Popis: | We propose two limited-memory BFGS (L-BFGS) trust-region methods for large-scale optimization with linear equality constraints. The methods are intended for problems where the number of equality constraints is small. By exploiting the structure of the quasi-Newton compact representation, both proposed methods solve the trust-region subproblems nearly exactly, even for large problems. We derive theoretical global convergence results of the proposed algorithms, and compare their numerical effectiveness and performance on a variety of large-scale problems. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |