Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints

Autor: Cosmin G. Petra, Roummel F. Marcia, Johannes J. Brust
Rok vydání: 2019
Předmět:
Zdroj: Computational Optimization and Applications. 74:669-701
ISSN: 1573-2894
0926-6003
DOI: 10.1007/s10589-019-00127-4
Popis: We propose two limited-memory BFGS (L-BFGS) trust-region methods for large-scale optimization with linear equality constraints. The methods are intended for problems where the number of equality constraints is small. By exploiting the structure of the quasi-Newton compact representation, both proposed methods solve the trust-region subproblems nearly exactly, even for large problems. We derive theoretical global convergence results of the proposed algorithms, and compare their numerical effectiveness and performance on a variety of large-scale problems.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje