InSARTrac: a novel approach for remote acquisition of 3D slope displacement vectors
Autor: | Daniel Scott Kieffer, Christoph Zambanini, Werner Lienhart, Helmut Woschitz |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | IOP Conference Series: Earth and Environmental Science. 833:012148 |
ISSN: | 1755-1315 1755-1307 |
DOI: | 10.1088/1755-1315/833/1/012148 |
Popis: | The recent advent of terrestrial interferometric synthetic aperture radar (InSAR) has greatly enhanced the ability of monitoring slope deformation. However, the displacements obtained are one-dimensional, offering little insight into the underlying deformation mechanism. This study summarizes an approach for obtaining three-dimensional slope displacement vectors through the integration of InSAR and two-dimensional image feature tracking (FT) technologies. The method, referred to as InSARTrac, uses a single digital camera oriented in the InSAR line of sight (LOS) generating time-lapse imagery, from which FT extracts (sub-) pixel shifts of pixel clusters. The 1D LOS InSAR measurements are vectorially combined with the 2D normal to the LOS FT measurements to obtain the 3D displacement vector. Bench-scale target displacement tests using a high precision translation for displacement and reference gave a 3D accuracy of 0.05 mm at a distance of 13 m, which corresponds to 1.3 mm at 500 m, assuming linear behaviour. These initial results indicate that InSARTrac can provide a reliable means for obtaining accurate 3D slope displacement vectors remotely and without the use of reflectors. Current studies are focused on implementing InSARTrac in a number of different field environments to investigate outdoor measurement accuracy and the range of potential applications. |
Databáze: | OpenAIRE |
Externí odkaz: |