Popis: |
During nutrient limitation, bacteria produce the alarmones (p)ppGpp as effectors of the stress signalling network termed the stringent response. Screening for (p)ppGpp-binding targets within Staphylococcus aureus identified four ribosome-associated GTPases (RA-GTPases), RsgA, RbgA, Era and HflX, each of which are cofactors in ribosome assembly, where they cycle between the ON (GTP-bound) and OFF (GDP-bound) states. Entry into the OFF-state from the ON-state occurs upon hydrolysis of GTP, with GTPase activity increasing substantially upon ribosome association. When bound to (p)ppGpp, GTPase activity is inhibited, reducing 70S ribosome assembly. Here, we sought to determine how (p)ppGpp impacts RA-GTPase-ribosome interactions by examining the affinity and kinetics of binding between RA-GTPases and ribosomes in various nucleotide-bound states. We show that RA-GTPases preferentially bind to 5′-diphosphate-containing nucleotides GDP and ppGpp over GTP, which is likely exploited as a regulatory mechanism within the cell. Binding to (p)ppGpp reduces stable association of RA-GTPases to ribosomal subunits compared to the GTP-bound state both in vitro and within bacterial cells by inducing the OFF-state conformation. We propose that in this conformation, the G2/switch I loop adopts a conformation incompatible with ribosome association. Altogether, we highlight (p)ppGpp-mediated inhibition of RA-GTPases as a major mechanism of stringent response-mediated growth control. |