Optimization of a Wear Property of Die Cast AZ91D Components via a Neural Network
Autor: | Yung-Kuang Yang, Jeong-Lian Wen, Jie-Ren Shie |
---|---|
Rok vydání: | 2009 |
Předmět: |
Materials science
Artificial neural network Scanning electron microscope Mechanical Engineering Delamination Mechanical engineering medicine.disease_cause Die casting Industrial and Manufacturing Engineering Die (integrated circuit) Mechanics of Materials Mold Slurry medicine General Materials Science Sequential quadratic programming |
Zdroj: | Materials and Manufacturing Processes. 24:400-408 |
ISSN: | 1532-2475 1042-6914 |
DOI: | 10.1080/10426910802714274 |
Popis: | This study integrated a trained general regression neural network (GRNN) and a sequential quadratic programming (SQP) method to determine an optimal parameter setting for a die casting process of AZ91D. Nine experiments were prepared under different die casting processes by selecting slurry pressure, the fusion slurry velocity and the mold temperature as three controlled parameters and the wear mass loss as a quality target. A field-emission scanning electron microscope (FE-SEM) was applied to realize wear mechanisms and AZ91D components with a low wear mass loss showed a low friction coefficient as well as small scratching marks and delamination on the worn surfaces. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |