Popis: |
The prospect of biomolecules using microorganisms in fermentation processes is widely used, in this context to solid state fermentation (SSF) has advantages such as the possibility of using agricultural and industrial waste and reduction of water waste. Studies show that different microorganisms can be used in SSF; actinomyces and fungi are the most used due to growth in media with low water activity. Among the highlight biomolecules produced are antibiotics, anticarcinogenic agents, anticoccidians, antiviral, neuroactive, antioxidants, and enzymes. The enzymes are produced in greater scale among the different classes; hydrolases have gained importance because of cellulases, hemicellulases, proteases, chitinases, lipases, and phytases. Cellulases are a complex capable of acting on cellulosic materials, promoting its hydrolysis to release sugars, of which glucose is the one with largest industrial interest. Xylanolytic enzymes act on xylan, hemicellulose components, which may be attached to the cellulose and lignin in the plant cell wall. The study of chitinase has been stimulated by their possible involvement as agents of defense against pathogenic organisms that contain chitin, such as insects, nematodes, and fungi. Proteases catalyze the hydrolysis of peptide bonds of proteins and may have activity on ester and amide bonds. Lipases allow catalysis of the hydrolysis and synthesis, often in chemo, regal, or enantioselective reactions. Furthermore, phytase catalyzes the hydrolysis of phytate to phosphate and inorganic phosphorus, increasing the bioavailability of phosphorus for monogastric animals. |