Automatic noncontact 3-dimensional gauging via sensor fusion

Autor: Joseph J. Tavormina, Shawn Buckley
Rok vydání: 1993
Předmět:
Zdroj: SPIE Proceedings.
ISSN: 0277-786X
DOI: 10.1117/12.156433
Popis: Manufacturers are now driving toward the increased use of automation and the goal of zero-defects. As quality is improved and defect rates approach the popularized " Six-Sigma" level (customarily 3. 4 defects per million) manual or sampled measurementtechniques limit the achievementof product quality and manufacturing cost objectives. New automated inspection and gaging technology is required for process verification and control. To be competitive in the current manufacturing environment new gaging technology must be integrated into the manufacturing process to provide on-line feedback. The co-authors are founders of CogniSense a technology company dedicated to industrial inspection and gaging applications which use non-contact sensing techniques. CogniSense is currently applying its technology in the precision metalforming and other manufacturing industries to perform automatic dimensional measurement and provide real time information used to control and fine-tune the manufacturing process. A variety of sensors are used to detect the characteristics of parts on-line as they are produced. Data from multiple sensors is " fused" and analyzed by a dedicated microcomputer which evaluates the sensory signature and calculates critical dimensions from the sensor input to determine whether parts are within the acceptable tolerance range. Pattern recognition algorithms are used to automatically select the sensors which provide the most important information about critical part characteristics and dimensions. These algorithms operate by observing the changes in sensor output as critical features of the part are varied. The decision-making algorithms
Databáze: OpenAIRE