Data Based Construction of Kernels for Classification

Autor: Vasyl Yu. Semenov, Hrushikesh N. Mhaskar, Evgeniya V. Semenova, Sergei V. Pereverzyev
Rok vydání: 2020
Předmět:
Zdroj: 2018 MATRIX Annals ISBN: 9783030382292
DOI: 10.1007/978-3-030-38230-8_8
Popis: This paper is an announcement for our longer paper in preparation. Traditional kernel based methods utilize either a fixed kernel or a combination of judiciously chosen kernels from a fixed dictionary. In contrast, we construct a data-dependent kernel utilizing the components of the eigen-decompositions of different kernels constructed using ideas from diffusion geometry, and use a regularization technique with this kernel with adaptively chosen parameters. In this paper, we illustrate our method using the two moons dataset, where we obtain a zero test error using only a minimal number of training samples.
Databáze: OpenAIRE