Dynamic MAC-based architecture of artificial neural networks suitable for hardware implementation on FPGAs

Autor: R. M. da Silva, Nadia Nedjah, Luiza de Macedo Mourelle, M. V. C. da Silva
Rok vydání: 2009
Předmět:
Zdroj: Neurocomputing. 72:2171-2179
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2008.06.027
Popis: Artificial neural networks (ANNs) is a well known bio-inspired model that simulates human brain capabilities such as learning and generalization. ANNs consist of a number of interconnected processing units, wherein each unit performs a weighted sum followed by the evaluation of a given activation function. The involved computation has a tremendous impact on the implementation efficiency. Existing hardware implementations of ANNs attempt to speed up the computational process. However these implementations require a huge silicon area that makes it almost impossible to fit within the resources available on a state-of-the-art FPGAs. In this paper, we devise a hardware architecture for ANNs that takes advantage of the dedicated adder blocks, commonly called MACs to compute both the weighted sum and the activation function. The proposed architecture requires a reduced silicon area considering the fact that the MACs come for free as these are FPGA's built-in cores. The hardware is as fast as existing ones as it is massively parallel. Besides, the proposed hardware can adjust itself on-the-fly to the user-defined topology of the neural network, with no extra configuration, which is a very nice characteristic in robot-like systems considering the possibility of the same hardware may be exploited in different tasks.
Databáze: OpenAIRE