Congruences for Apéry numbers βn =∑k=0nn k2n+k k

Autor: Zhi-Wei Sun, Yuri Matiyasevich, Hui-Qin Cao
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Number Theory. 16:981-1003
ISSN: 1793-7310
1793-0421
DOI: 10.1142/s1793042120500505
Popis: In this paper, we establish some congruences involving the Apéry numbers [Formula: see text]. For example, we show that [Formula: see text] for any positive integer [Formula: see text], and [Formula: see text] for any prime [Formula: see text], where [Formula: see text] is the [Formula: see text]th Bernoulli number. We also present certain relations between congruence properties of the two kinds of Aṕery numbers, [Formula: see text] and [Formula: see text].
Databáze: OpenAIRE