Congruences for Apéry numbers βn =∑k=0nn k2n+k k
Autor: | Zhi-Wei Sun, Yuri Matiyasevich, Hui-Qin Cao |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | International Journal of Number Theory. 16:981-1003 |
ISSN: | 1793-7310 1793-0421 |
DOI: | 10.1142/s1793042120500505 |
Popis: | In this paper, we establish some congruences involving the Apéry numbers [Formula: see text]. For example, we show that [Formula: see text] for any positive integer [Formula: see text], and [Formula: see text] for any prime [Formula: see text], where [Formula: see text] is the [Formula: see text]th Bernoulli number. We also present certain relations between congruence properties of the two kinds of Aṕery numbers, [Formula: see text] and [Formula: see text]. |
Databáze: | OpenAIRE |
Externí odkaz: |