A generalization of Lemma 1 in Kotlarski (1967)

Autor: Xunjie Zheng, Siran Li
Rok vydání: 2020
Předmět:
Zdroj: Statistics & Probability Letters. 165:108814
ISSN: 0167-7152
DOI: 10.1016/j.spl.2020.108814
Popis: Kotlarski (1967) establishes a fundamental result on identification of marginal distributions of independent random variables X , Y , and Z from the joint distribution of random variables ( U , V ) , where ( U , V ) = ( X + Z , Y + Z ) . We extend this result to the case ( U , V ) = ( X + a Z 1 + b Z 2 , Y + c Z 1 + d Z 2 ) , where Z 1 and Z 2 are identically distributed, and a , b , c , and d are different weights. As an outgrowth of the proof, we also present a complete solution to a generalized version of Cauchy functional equation.
Databáze: OpenAIRE