NEW TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR EVOLUTION EQUATIONS
Autor: | Xia Zhang, Hong Zhao, Heng-Ying Xu, Cheng-Jie Bai |
---|---|
Rok vydání: | 2011 |
Předmět: |
Physics
Class (set theory) Partial differential equation Deformation (mechanics) Mathematical analysis Elliptic function Statistical and Nonlinear Physics Condensed Matter Physics Nonlinear system symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Simple (abstract algebra) Jacobian matrix and determinant symbols Trigonometric functions |
Zdroj: | International Journal of Modern Physics B. 25:319-327 |
ISSN: | 1793-6578 0217-9792 |
DOI: | 10.1142/s0217979211056986 |
Popis: | The deformation mapping method is extended to solve a class of nonlinear evolution equations (NLEEs). Many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, and Jacobian elliptic function solutions, are obtained by a simple algebraic transformation relation between the solutions of the NLEEs and those of the cubic nonlinear Klein–Gordon (NKG) equation. |
Databáze: | OpenAIRE |
Externí odkaz: |