Popis: |
Surgery theory and the classification of simply connected 4-manifolds comprise two key consequences of the disc embedding theorem. The chapter begins with an introduction to surgery theory from the perspective of 4-manifolds. In particular, the terms and maps in the surgery sequence are defined, and an explanation is given as to how the sphere embedding theorem, with the added ingredient of topological transversality, can be used to define the maps in the surgery sequence and show that it is exact. The surgery sequence is applied to classify simply connected closed 4-manifolds up to homeomorphism. The chapter closes with a survey of related classification results. |