Interlacing theorems for the zeros of some orthogonal polynomials from different sequences
Autor: | Ferenc Toókos, Kerstin Jordaan |
---|---|
Rok vydání: | 2009 |
Předmět: |
Numerical Analysis
Gegenbauer polynomials Applied Mathematics Discrete orthogonal polynomials Mathematics::Classical Analysis and ODEs Askey–Wilson polynomials Classical orthogonal polynomials Combinatorics Computational Mathematics symbols.namesake Hahn polynomials Orthogonal polynomials Wilson polynomials symbols Jacobi polynomials Mathematics |
Zdroj: | Applied Numerical Mathematics. 59:2015-2022 |
ISSN: | 0168-9274 |
DOI: | 10.1016/j.apnum.2009.04.002 |
Popis: | We study the interlacing properties of the zeros of orthogonal polynomials p"n and r"m, m=n or n-1 where {p"n}"n"="1^~ and {r"m}"m"="1^~ are different sequences of orthogonal polynomials. The results obtained extend a conjecture by Askey, that the zeros of Jacobi polynomials p"n=P"n^(^@a^,^@b^) and r"n=P"n^(^@c^,^@b^) interlace when @a |
Databáze: | OpenAIRE |
Externí odkaz: |