A novel approach for the improvement of open circuit voltage and fill factor of InGaAsSb/GaSb thermophotovoltaic cells

Autor: Gordon C. Taylor, David M. DePoy, Ramon U. Martinelli, Nancy A. Morris, Greg W. Charache, Dmitri Z. Garbuzov, John C. Connolly, Hao Lee, Victor Borisovich Khalfin
Rok vydání: 1998
Předmět:
Zdroj: AIP Conference Proceedings.
ISSN: 0094-243X
DOI: 10.1063/1.54958
Popis: Heterojunction n-Al{sub 0.25}Ga{sub 0.75}As{sub 0.02}Sb{sub 098}/p-In{sub 0.16}Ga{sub 0.84}As{sub 0.04}Sb{sub 0.96} thermophotovoltaic (TPV) cells were grown by molecular-beam epitaxy on n-GaSb-substrates. In the spectral range from 1 {micro}m to 2.1 {micro}m these cells, as well as homojunction n-p-In{sub 0.16}Ga{sub 0.84}As{sub 0.04}Sb{sub 0.96} cells, have demonstrated internal quantum efficiencies exceeding 80%, despite about a 200 meV barrier in the conduction band at the heterointerface. Estimation shows that the thermal emission of the electrons photogenerated in p-region over this barrier can provide high efficiency for hetero-cells if the electron recombination time in p-In{sub 0.16}Ga{sub 0.84}As{sub 0.04}Sb{sub 0.96}is longer than 10 ns. Keeping the same internal efficiency as homojunction cells, hetero-cells provide a unique opportunity to decrease the dark forward current and thereby increase open circuit voltage (V{sub {proportional_to}}) and fill factor at a given illumination level. It is shown that the decrease of the forward current in hetero-cells is due to the lower recombination rate in n-type wider-bandgap space-charge region and to the suppression of the hole component of the forward current. The improvement in V{sub {proportional_to}} reaches 100% at illumination level equivalent to 1 mA/cm{sup 2} and it decreases to 5% at the highest illumination levels (2--3 A/cm{sup 2}), where the electron current component dominates in both the homo- and heterojunction cells. Values of V{sub {proportional_to}} as high as 310 meV have been obtained for a hetero-cell at illumination levels of 3 A/cm{sup 2}. Under this condition, the expected fill factor value is about 72% for a hetero-cell with improved series resistance. The heterojunction concept provides excellent prospects for further reduction of the dark forward current in TPV cells.
Databáze: OpenAIRE