A Nonparametric Approach Using Dirichlet Process for Hierarchical Generalized Linear Mixed Models

Autor: Jing Wang
Rok vydání: 2021
Předmět:
Zdroj: Journal of Data Science. 8:43-59
ISSN: 1683-8602
1680-743X
DOI: 10.6339/jds.2010.08(1).562
Popis: In this paper, we propose a nonparametric approach using the Dirichlet processes (DP) as a class of prior distributions for the distribution G of the random effects in the hierarchical generalized linear mixed model (GLMM). The support of the prior distribution (and the posterior distribution) is large, allowing for a wide range of shapes for G. This provides great flexibility in estimating G and therefore produces a more flexible estimator than does the parametric analysis. We present some computation strategies for posterior computations involved in DP modeling. The proposed method is illustrated with real examples as well as simulations.
Databáze: OpenAIRE