Multi-Contextual and Multi-Aspect Analysis for Road Surface Type Classification Through Inertial Sensors and Deep Learning
Autor: | Aldo von Wangenheim, Jeferson Menegazzo |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | SBESC |
DOI: | 10.1109/sbesc51047.2020.9277846 |
Popis: | The demand for a variety of situational data from the traffic environment and its participants has intensified with the development of applications in Intelligent Transport Systems (ITS). Among these data, the road surface type classification is one of the most important and can be used in the entire ITS domain. For its widespread application, it is necessary to employ a robust technology for the generation of raw data and to develop of a reliable and stable model to process these data in order to produce the classification. The developed model must operate correctly in different vehicles, under different driving styles and in different environments in which a vehicle can travel. In this work we employ inertial sensors, represented by accelerometers and gyroscopes, which are a safe, non-polluting, and low-cost alternative, ideal for large-scale use. We collect nine datasets with contextual variations, including three different vehicles, with three different drivers, in three different environments, in which there are three different road surface types, in addition to variations in the conservation state and presence of anomalies and obstacles such as potholes and speed bumps. After data collection, these data were used in experiments to evaluate various aspects, such as the influence of the vehicle data collection point, the analysis domain, the model input features, and the data window. Afterwards we evaluated the learning and generalization capacity of the models for unknown contexts. In a third step, the data were used in three Deep Neural Network (DNN) models: LSTM-based, GRU-based, and CNN-based. Through a multi-aspect and multi-contextual analysis, we considered the CNN-based model as the best one, which obtained an average accuracy between the data collection placements of 94.27% for learning and 92.70% for validation, classifying the road surface between asphalt, cobblestone or dirt road segments. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...