Autor: |
Jan Fredriksson, Mats Sandberg |
Rok vydání: |
2009 |
Předmět: |
|
Zdroj: |
Building and Environment. 44:1426-1430 |
ISSN: |
0360-1323 |
DOI: |
10.1016/j.buildenv.2008.06.017 |
Popis: |
Passive chilled beams are often used to provide cooling or additional cooling when the ventilation system cannot cope with the whole cooling load. The advantage of passive cooling is that it is a silent cooling. Often the chilled beams are installed above a false ceiling and thereby the room is subdivided into two compartments. From the chilled beam a plume is generated. Make-up air (return air) needs to flow into the upper compartment to substitute the airflow generated by the chilled beam. Therefore openings for this purpose are installed in the false ceiling. Small openings constitute a resistance to the flow and the locations of the openings affect the flow pattern. The overall performance was studied in a mock-up of a real office by changing both the size and position of the openings for the make-up air. A uniform heating source was arranged by covering the floor with a heating foil. The best location and size of the openings were explored by both recording the heat absorbed by the beam and the temperature in the room. Minimum temperature attained in the room is the signature of the most efficient cooling. To achieve efficient cooling with a uniform floor-based heating source, two conditions must be fulfilled: a) the return opening area must be at least equal to the horizontal area of the chilled beam; b) the return air openings must be located at the perimeter of the room. In general we can expect conditions a) and b) to be applicable irrespective of type of heat, but for point sources we could achieve the best cooling by placing the return air opening above the heat source. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|