Rough singular integral operators on Hardy-Sobolev spaces

Autor: Daning Chen, Jie-cheng Chen, Dashan Fan
Rok vydání: 2005
Předmět:
Zdroj: Applied Mathematics-A Journal of Chinese Universities. 20:1-9
ISSN: 1993-0445
1005-1031
DOI: 10.1007/s11766-005-0030-8
Popis: The authors study the singular integral operator $$T_{\Omega ,\alpha } f(x) = p.v.\int_{R^n } {b(\left| y \right|)\Omega (y')\left| y \right|^{ - n - \alpha } f(x - y)dy,} $$ defined on all test functions f, where b is a bounded function, a>0, Θ (y′) is an integrable function on the unit sphere S n−1 satisfying certain cancellation conditions. It is proved that, for n/(n+a)
Databáze: OpenAIRE
načítá se...