Rough singular integral operators on Hardy-Sobolev spaces
Autor: | Daning Chen, Jie-cheng Chen, Dashan Fan |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Applied Mathematics-A Journal of Chinese Universities. 20:1-9 |
ISSN: | 1993-0445 1005-1031 |
DOI: | 10.1007/s11766-005-0030-8 |
Popis: | The authors study the singular integral operator $$T_{\Omega ,\alpha } f(x) = p.v.\int_{R^n } {b(\left| y \right|)\Omega (y')\left| y \right|^{ - n - \alpha } f(x - y)dy,} $$ defined on all test functions f, where b is a bounded function, a>0, Θ (y′) is an integrable function on the unit sphere S n−1 satisfying certain cancellation conditions. It is proved that, for n/(n+a) |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...