Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer

Autor: I. A. Blatov, A. I. Zadorin, E. V. Kitaeva
Rok vydání: 2019
Předmět:
Zdroj: Computational Mathematics and Mathematical Physics. 59:343-354
ISSN: 1555-6662
0965-5425
DOI: 10.1134/s0965542519030047
Popis: The problem of approximate calculation of the derivatives of functions with large gradients in the region of an exponential boundary layer is considered. It is known that the application of classical formulas of numerical differentiation to functions with large gradients in a boundary layer leads to significant errors. It is proposed to interpolate such functions by cubic splines on a Shishkin grid condensed in the boundary layer. The derivatives of a function defined on the grid nodes are found by differentiating the cubic spline. Using this approach, estimates of the relative error in the boundary layer and the absolute error outside of the boundary layer are obtained. These estimates are uniform in a small parameter. The results of computational experiments are discussed.
Databáze: OpenAIRE