Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg-Landau Equation
Autor: | Branislav N. Aleksić, Najdan B. Aleksić, Goran Pavlovic, Vladimir Skarka |
---|---|
Rok vydání: | 2007 |
Předmět: |
Physics
Steady state Stability criterion General Physics and Astronomy 01 natural sciences 010305 fluids & plasmas Pulse (physics) Quintic function Nonlinear system Dissipative soliton Classical mechanics Variational method Quantum mechanics 0103 physical sciences Dissipative system 010306 general physics Nonlinear Sciences::Pattern Formation and Solitons |
Zdroj: | Acta Physica Polonica A. 112:941-947 |
ISSN: | 1898-794X 0587-4246 |
DOI: | 10.12693/aphyspola.112.941 |
Popis: | The generation and nonlinear dynamics of one-dimensional optical dissipative solitonic pulses are examined. The variational method is extended to complex dissipative systems, in order to obtain steady state solutions of the (1 + 1)-dimensional complex cubic-quintic Ginzburg–Landau equation. A stability criterion is established fixing a domain of dissipative parameters for stable steady state solutions. Following numerical simulations, evolution of any input pulse from this domain leads to stable dissipative temporal solitons. Analytical predictions are confirmed by numerical evolution of input temporal pulses towards stable dissipative solitons. |
Databáze: | OpenAIRE |
Externí odkaz: |