On the realization of the Gelfand character of a finite group as a twisted trace

Autor: Jorge Soto-Andrade, Maria-Francisca Yáñez-Valdés
Rok vydání: 2021
Předmět:
Zdroj: Journal of Group Theory. 25:509-525
ISSN: 1435-4446
1433-5883
Popis: We show that the Gelfand character χ G \chi_{G} of a finite group 𝐺 (i.e. the sum of all irreducible complex characters of 𝐺) may be realized as a “twisted trace” g ↦ Tr ⁡ ( ρ g ∘ T ) g\mapsto\operatorname{Tr}(\rho_{g}\circ T) for a suitable involutive linear automorphism 𝑇 of L 2 ⁢ ( G ) L^{2}(G) , where ( L 2 ⁢ ( G ) , ρ ) (L^{2}(G),\rho) is the right regular representation of 𝐺. Moreover, we prove that, under certain hypotheses, we have T ⁢ ( f ) = f ∘ L T(f)=f\circ L ( f ∈ L 2 ⁢ ( G ) f\in L^{2}(G) ), where 𝐿 is an involutive anti-automorphism of 𝐺. The natural representation 𝜏 of 𝐺 associated to the natural 𝐿-conjugacy action of 𝐺 in the fixed point set Fix G ⁡ ( L ) \operatorname{Fix}_{G}(L) of 𝐿 turns out to be a Gelfand model for 𝐺 in some cases. We show that ( L 2 ⁢ ( Fix G ⁡ ( L ) ) , τ ) (L^{2}(\operatorname{Fix}_{G}(L)),\tau) fails to be a Gelfand model if 𝐺 admits non-trivial central involutions.
Databáze: OpenAIRE