On the Diophantine Equation 3x + p5y = z2

Autor: Kittipong Laipaporn, Saeree Wananiyakul, Prathomjit Khachorncharoenkul
Rok vydání: 2019
Předmět:
Zdroj: Walailak Journal of Science and Technology (WJST). 16:647-653
ISSN: 2228-835X
1686-3933
DOI: 10.48048/wjst.2019.6933
Popis: In this paper, we present new series of solutions of the Diophantine equation 3x + p5y = z2 where p is a prime number and x; y and z are nonnegative integers using elementary techniques. Moreover, the equation has no solution if p is equivalent to 5 or 7 modulo 24.
Databáze: OpenAIRE