Popis: |
Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of adaptations in health, resilience, and performance. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to seek whole body health benefits. Mechanisms of action of these distinct doses are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n=21, 12M/9F, 22±3y) or HITT (n=19, 11M/8F, 22±2y). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR≤0.05) immediately (h0, EVs only), h3, and h24 post-exercise within and between exercise doses. Additionally, all apparently responsive transcripts (FDRNEW AND NOTEWORTHYWe examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation. |