IMAGENS DE VEÍCULO AÉREO NÃO TRIPULADO APLICADAS NA OBTENÇÃO DO ÍNDICE DE VEGETAÇÃO POR DIFERENÇA NORMALIZADA
Autor: | Mikael Timóteo Rodrigues, Felipe de Souza Nogueira Tagliarini, Yara Manfrin Garcia, Bruno Timóteo Rodrigues, Sérgio Campos |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | ENERGIA NA AGRICULTURA. 36:111-122 |
ISSN: | 2359-6562 1808-8759 |
Popis: | IMAGENS DE VEÍCULO AÉREO NÃO TRIPULADO APLICADAS NA OBTENÇÃO DO ÍNDICE DE VEGETAÇÃO POR DIFERENÇA NORMALIZADA FELIPE DE SOUZA NOGUEIRA TAGLIARINI1, MIKAEL TIMÓTEO RODRIGUES2-3, BRUNO TIMÓTEO RODRIGUES1; YARA MANFRIN GARCIA1 E SÉRGIO CAMPOS1 1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas (FCA) - Universidade Estadual Paulista (UNESP), Avenida Universitária, nº 3780, Altos do Paraíso, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail: felipe_tagliarini@hotmail.com; brunogta21@hotmail.com; yaramanfrin@hotmail.com; sergio.campos@unesp.br 2 Centro Universitário Dinâmica das Cataratas (UDC), Rua Castelo Branco, nº 440, Centro, CEP: 85852-010, Foz do Iguaçu, Paraná, Brasil. E-mail: mikael.rodrigues@udc.edu.br 3 Parque Tecnológico Itaipu (PTI), Avenida Tancredo Neves, nº 6731, Jardim Itaipu, Caixa Postal: 2039, CEP: 85867-900, Foz do Iguaçu, Paraná, Brasil. E-mail: mikael.rodrigues@pti.org.br. RESUMO: O advento dos Veículos Aéreos Não Tripulados (VANT) como ferramenta no sensoriamento remoto possibilitou uma plataforma atuante em diferentes áreas para o mapeamento com elevada precisão e resolução. O objetivo deste estudo consistiu na análise do Índice de Vegetação por Diferença Normalizada (NDVI) para elaboração de mapa temático por meio de aerofotogrametria e fotointerpretação, com maior detalhamento da vegetação devido à altíssima resolução espacial alcançada com o uso de imagens coletadas por VANT em trecho do rio Lavapés, dentro dos limites da Fazenda Experimental Lageado no município de Botucatu-SP. As imagens foram obtidas por meio dos sensores MAPIR Survey3W RGB e Survey3W NIR/InfraRED, embarcados em VANT multirrotor 3DR SOLO. Para construção dos ortomosaicos RGB e NDVI, as imagens foram processadas no software Pix4Dmapper 3.0. O resultado do NDVI proporcionou transição bem nítidas entre os alvos bióticos (vegetação) e os alvos abióticos (corpo d'água, solo e edificações), e também entre a própria vegetação, possibilitando a distinção da vegetação de porte arbóreo, com maior vigor vegetativo, em relação a vegetação de porte herbáceo. As imagens com elevada resolução espacial coletadas por VANT, demonstraram flexibilidade de utilização, possuindo elevado potencial para o mapeamento de dinâmica da paisagem e a resposta espectral da vegetação. Palavras-chaves: drone, índice radiométrico, sensoriamento remoto IMAGES OF UNMANNED AERIAL VEHICLE APPLIED TO OBTAIN THE NORMALIZED DIFFERENCE VEGETATION INDEX ABSTRACT: The advent of Unmanned Aerial Vehicle (UAV) as a tool in remote sensing has enabled a platform acting in different areas for mapping with high precision and resolution. This study aimed to analyze the Normalized Difference Vegetation Index (NDVI) for the elaboration of thematic map through aerophotogrammetry and photointerpretation, with greater detail of vegetation due to high spatial resolution achieved with the use of images collected by UAV in a stretch of Lavapés river, inside the domains of Lageado Experimental Farm in the municipality of Botucatu-SP. The images were obtained through MAPIR Survey3W RGB and Survey3W NIR/InfraRED sensors, aboard a 3DR SOLO multirotor UAV. For constructing RGB and NDVI orthomosaics, the images were processed using Pix4Dmapper 3.0 software. The NDVI result provided a clear transition among biotic targets (vegetation) and abiotic targets (water, soil and buildings), and among the vegetation itself, with greater vegetative vigor, making possible the distinction of arboreal vegetation, in relation to herbaceous vegetation. The images with high spatial resolution collected by UAV demonstrated the flexibility of use, having high potential to mapping landscape dynamics and the spectral response of vegetation. Keywords: drone, radiometric index, remote sensing. |
Databáze: | OpenAIRE |
Externí odkaz: |