On the Möbius Function of a Pointed Graded Lattice
Autor: | Samuel Asefa Fufa, Melkamu Zeleke |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Combinatorics Applied Mathematics General Mathematics Numerical analysis 010102 general mathematics Möbius function 01 natural sciences Wedge (geometry) Reduced homology 010101 applied mathematics Ordered set Partition (number theory) SPHERES 0101 mathematics Mathematics Vector space |
Zdroj: | Indian Journal of Pure and Applied Mathematics. 49:51-69 |
ISSN: | 0975-7465 0019-5588 |
DOI: | 10.1007/s13226-018-0255-x |
Popis: | In this paper, we compute the Mobius function of pointed integer partition and pointed ordered set partition using topological and analytic methods. We show that the associated order complex is a wedge of spheres and compute the associated reduced homology group for each subposet. In addition, we compute the Mobius function of pointed graded lattice and use our method to compute the Mobius function of pointed direct sum decomposition of vector spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |