Total domination in maximal outerplanar graphs II
Autor: | Elizabeth Jonck, Michael Dorfling, Johannes H. Hattingh |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Vertex (graph theory) Domination analysis 0211 other engineering and technologies 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology 01 natural sciences Graph Theoretical Computer Science Combinatorics 010201 computation theory & mathematics Outerplanar graph Discrete Mathematics and Combinatorics Mathematics |
Zdroj: | Discrete Mathematics. 339:1180-1188 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2015.11.003 |
Popis: | The total domination number of a graph is the minimum size of a set S such that every vertex has a neighbor in S . We show that a maximal outerplanar graph of order n ? 5 has total domination number at most 2 n / 5 , apart from two exceptions, and this bound is best possible. |
Databáze: | OpenAIRE |
Externí odkaz: |