On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$
Autor: | Thomas Westerbäck, Fabio Pasticci, Olof Heden |
---|---|
Rok vydání: | 2012 |
Předmět: |
Discrete mathematics
Code (set theory) Algebra and Number Theory Computer Networks and Communications Hamming bound Applied Mathematics Symmetry group Microbiology Combinatorics Discrete Mathematics and Combinatorics Rank (graph theory) Binary code Time complexity Mathematics Integer (computer science) |
Zdroj: | Advances in Mathematics of Communications. 6:121-130 |
ISSN: | 1930-5338 |
DOI: | 10.3934/amc.2012.6.121 |
Popis: | It is proved that for every integer n = 2(k) - 1, with k >= 5, there exists a perfect code C of length n, of rank r = n - log(n + 1) + 2 and with a trivial symmetry group. This result extends an ... |
Databáze: | OpenAIRE |
Externí odkaz: |