Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe
Autor: | Rajib Sarkar, A. Yamamshita, Sirko Kamusella, Philipp Materne, Tsuyoshi Tamegai, D. V. Efremov, Hubertus Luetkens, J. C. Orain, Yue Sun, Yoshihiko Takano, Hans-Henning Klauss, Robert Scheuermann, Tatsuo Goko, S.-L. Drechsler, Vadim Grinenko |
---|---|
Rok vydání: | 2018 |
Předmět: |
Superconductivity
Physics Condensed matter physics Magnetism Knight shift 02 engineering and technology Muon spin spectroscopy Atmospheric temperature range 021001 nanoscience & nanotechnology 01 natural sciences Quantum critical point 0103 physical sciences Antiferromagnetism Spin density wave Condensed Matter::Strongly Correlated Electrons 010306 general physics 0210 nano-technology |
Zdroj: | Physical Review B. 97 |
ISSN: | 2469-9969 2469-9950 |
DOI: | 10.1103/physrevb.97.201102 |
Popis: | A nematic transition preceding a long-range spin density wave antiferromagnetic phase is a common feature of many parent compounds of Fe-based superconductors. However, in the FeSe system with a nematic transition at ${T}_{\mathrm{s}}\ensuremath{\approx}90$ K, no evidence for long-range static magnetism is found down to very low temperatures. The lack of magnetism is a challenge for the theoretical description of FeSe. We investigated high-quality single crystals of FeSe using high-field (up to 9.5 T) muon spin rotation ($\ensuremath{\mu}\mathrm{SR}$) measurements. The $\ensuremath{\mu}\mathrm{SR}$ Knight shift and the bulk susceptibility linearly scale at high temperatures but deviate from this behavior around ${T}^{*}\ensuremath{\sim}10--20$ K, where the Knight shift exhibits a kink. In the temperature range ${T}_{\mathrm{s}}\ensuremath{\gtrsim}T\ensuremath{\gtrsim}{T}^{*}$, the muon spin depolarization rate shows a quantum critical behavior $\mathrm{\ensuremath{\Lambda}}\ensuremath{\propto}{T}^{\ensuremath{-}0.4}$. The observed critical scaling indicates that FeSe is in the vicinity of an itinerant antiferromagnetic quantum critical point. Below ${T}^{*}$ the quantum critical behavior breaks down. We argue that this breakdown is caused by a temperature-induced Lifschitz transition. |
Databáze: | OpenAIRE |
Externí odkaz: |