The second Feng–Rao number for codes coming from telescopic semigroups
Autor: | Pedro A. García-Sánchez, J. I. Farrán, Benjamín A. Heredia, Micah J. Leamer |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Semigroup Applied Mathematics 010102 general mathematics 020206 networking & telecommunications Multiplicity (mathematics) 02 engineering and technology Algebraic geometry 01 natural sciences Computer Science Applications Apéry's constant Numerical semigroup 0202 electrical engineering electronic engineering information engineering 0101 mathematics Hamming weight Mathematics |
Zdroj: | Designs, Codes and Cryptography. 86:1849-1864 |
ISSN: | 1573-7586 0925-1022 |
DOI: | 10.1007/s10623-017-0426-5 |
Popis: | In this manuscript we show that the second Feng–Rao number of any telescopic numerical semigroup agrees with the multiplicity of the semigroup. To achieve this result we first study the behavior of Apery sets under gluings of numerical semigroups. These results provide a bound for the second Hamming weight of one-point Algebraic Geometry codes, which improves upon other estimates such as the Griesmer Order Bound. |
Databáze: | OpenAIRE |
Externí odkaz: |