A congruence for the Fourier coefficients of a modular form and its application to quadratic forms
Autor: | Hyunsuk Moon |
---|---|
Rok vydání: | 2008 |
Předmět: | |
Zdroj: | The Ramanujan Journal. 16:73-81 |
ISSN: | 1572-9303 1382-4090 |
DOI: | 10.1007/s11139-007-9097-6 |
Popis: | Let F(z)=∑n=1∞A(n)qn denote the unique weight 6 normalized cuspidal eigenform on Γ0(4). We prove that A(p)≡0,2,−1(mod 11) when p≠11 is a prime. We then use this congruence to give an application to the number of representations of an integer by quadratic form of level 4. |
Databáze: | OpenAIRE |
Externí odkaz: |