A congruence for the Fourier coefficients of a modular form and its application to quadratic forms

Autor: Hyunsuk Moon
Rok vydání: 2008
Předmět:
Zdroj: The Ramanujan Journal. 16:73-81
ISSN: 1572-9303
1382-4090
DOI: 10.1007/s11139-007-9097-6
Popis: Let F(z)=∑n=1∞A(n)qn denote the unique weight 6 normalized cuspidal eigenform on Γ0(4). We prove that A(p)≡0,2,−1(mod 11) when p≠11 is a prime. We then use this congruence to give an application to the number of representations of an integer by quadratic form of level 4.
Databáze: OpenAIRE