Computer Regression Models for P-Glycoprotein Transport of Drugs
Autor: | John C. Dearden, D.E. Polianczyk, Oleg A. Raevsky, V. Yu. Grigor’ev, S. L. Solodova |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pharmacology
Quantitative structure–activity relationship biology 010405 organic chemistry Chemistry Regression analysis Statistical model Computational biology 01 natural sciences 0104 chemical sciences Random forest Support vector machine 010404 medicinal & biomolecular chemistry Molecular descriptor Drug Discovery Linear regression biology.protein P-glycoprotein |
Zdroj: | Pharmaceutical Chemistry Journal. 52:975-979 |
ISSN: | 1573-9031 0091-150X |
Popis: | Regression models of the cellular substrate specificity of 177 drugs for P-glycoprotein were built using linear regression, random forest, and support vector methods. QSAR modeling used a full-trial search of all possible combinations of the seven most significant molecular descriptors with clear physicochemical interpretations. The statistics of the obtained models were satisfactory according to an internal cross-validation and external validation tests using 44 new compounds. H-bond descriptors were components of almost all most significant QSAR models. This confirmed that H-bonds played an important role in penetration of the compounds through the blood–brain barrier. The developed statistical models could be used to assess P-glycoprotein transport of investigational new drugs. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |