Overpartition function modulo 16 and some binary quadratic forms
Autor: | Xinhua Xiong |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Algebra and Number Theory Mathematics::Number Theory Computer Science::Information Retrieval Modulo 010102 general mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) 0102 computer and information sciences Function (mathematics) Congruence relation 01 natural sciences Combinatorics 010201 computation theory & mathematics Computer Science::General Literature Congruence (manifolds) Binary quadratic form 0101 mathematics Mathematics |
Zdroj: | International Journal of Number Theory. 12:1195-1208 |
ISSN: | 1793-7310 1793-0421 |
DOI: | 10.1142/s1793042116500731 |
Popis: | Let [Formula: see text] denote the number of overpartitions of [Formula: see text]. In this paper, we will give a complete determination of [Formula: see text] modulo [Formula: see text] by relating it to some binary quadratic forms; this will generalize the result of Kim on [Formula: see text] modulo [Formula: see text]. Moreover, we give infinitely many new Ramanujan-like congruences for overpartition function modulo [Formula: see text]. |
Databáze: | OpenAIRE |
Externí odkaz: |