Maschke’s theorem for smash products of quasitriangular weak Hopf algebras
Autor: | Wen-juan Zhai, Liang-yun Zhang |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 81:35-44 |
ISSN: | 1865-8784 0025-5858 |
DOI: | 10.1007/s12188-010-0047-7 |
Popis: | The paper is concerned with the semisimplicity of smash products of quasitriangular weak Hopf algebras. Let (H,R) be a finite dimensional quasitriangular weak Hopf algebra over a field k and A any semisimple and quantum commutative weak H-module algebra. Based on the work of Nikshych et al. (Topol. Appl. 127(1–2):91–123, 2003), we give Maschke’s theorem for smash products of quasitriangular weak Hopf algebras, stating that A#H is semisimple if and only if A is a projective left A#H-module, which extends the Theorem 3.2 given in Yang and Wang (Commun. Algebra 27(3):1165–1170, 1999). |
Databáze: | OpenAIRE |
Externí odkaz: |