Représentations banales de

Autor: Alberto Mínguez, Vincent Sécherre
Rok vydání: 2013
Předmět:
Zdroj: Compositio Mathematica. 149:679-704
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x12000590
Popis: Let${\rm F}$be a non-Archimedean locally compact field of residue characteristic$p$, let${\rm D}$be a finite-dimensional central division${\rm F}$-algebra and let${\rm R}$be an algebraically closed field of characteristic different from$p$. We definebanalirreducible${\rm R}$-representations of the group${\rm G}={\rm GL}_{m}({\rm D})$. This notion involves a condition on the cuspidal support of the representation depending on the characteristic of${\rm R}$. When this characteristic is banal with respect to${\rm G}$, in particular when${\rm R}$is the field of complex numbers, any irreducible${\rm R}$-representation of${\rm G}$is banal. In this article, we give a classification of all banal irreducible${\rm R}$-representations of${\rm G}$in terms of certain multisegments, called banal. When${\rm R}$is the field of complex numbers, our method provides a new proof, entirely local, of Tadić’s classification of irreducible complex smooth representations of${\rm G}$.
Databáze: OpenAIRE