Optimal Error Estimation for ${\bfH}({\rmcurl})$-Conformingp-Interpolation in Two Dimensions

Autor: Norbert Heuer, Alexei Bespalov
Rok vydání: 2009
Předmět:
Zdroj: SIAM Journal on Numerical Analysis. 47:3977-3989
ISSN: 1095-7170
0036-1429
DOI: 10.1137/090753802
Popis: In this paper we prove an optimal error estimate for the ${\bf H}({\rm curl})$-conforming projection-based $p$-interpolation operator introduced in [L. Demkowicz and I. Babuska, SIAM J. Numer. Anal., 41 (2003), pp. 1195-1208]. This result is proved on the reference element (either triangle or square) $K$ for regular vector fields in ${\bf H}^r({\rm curl},K)$ with arbitrary $r >0$. The formulation of the result in the ${\bf H}({\rm div})$-conforming setting, which is relevant for the analysis of high-order boundary element approximations for Maxwell's equations, is provided as well.
Databáze: OpenAIRE