Finite element solution of nonlinear diffusion problems

Autor: K. M. Abdelgaber, M. S. El-Azab
Rok vydání: 2011
Předmět:
Zdroj: Applied Mathematics and Computation. 217:6198-6205
ISSN: 0096-3003
DOI: 10.1016/j.amc.2010.12.105
Popis: In this paper we describe the Rothe-finite element numerical scheme to find an approximate solution of a nonlinear diffusion problem modeled as a parabolic partial differential equation of even order. This scheme is based on the Rothe’s approximation in time and on the finite element method (FEM) approximation in the spatial discretization. A proof of convergence of the approximate solution is given and error estimates are shown.
Databáze: OpenAIRE