Finite element solution of nonlinear diffusion problems
Autor: | K. M. Abdelgaber, M. S. El-Azab |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Applied Mathematics and Computation. 217:6198-6205 |
ISSN: | 0096-3003 |
DOI: | 10.1016/j.amc.2010.12.105 |
Popis: | In this paper we describe the Rothe-finite element numerical scheme to find an approximate solution of a nonlinear diffusion problem modeled as a parabolic partial differential equation of even order. This scheme is based on the Rothe’s approximation in time and on the finite element method (FEM) approximation in the spatial discretization. A proof of convergence of the approximate solution is given and error estimates are shown. |
Databáze: | OpenAIRE |
Externí odkaz: |