Hypercyclic and Chaotic Convolution Associated with the Jacobi–Dunkl Operator
Autor: | F. Chouchene, M. Mili, Khalifa Trimèche, Hatem Mejjaoli |
---|---|
Rok vydání: | 2013 |
Předmět: |
Pure mathematics
General Mathematics Mathematical analysis Mathematics::Classical Analysis and ODEs Chaotic Operator theory Convolution power Circular convolution Universality (dynamical systems) Mathematics::Quantum Algebra Heat equation Convolution theorem Mathematics::Representation Theory Mathematics Dunkl operator |
Zdroj: | Mediterranean Journal of Mathematics. 11:577-600 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-013-0301-1 |
Popis: | In this paper, we study the Jacobi–Dunkl convolution operators on some distribution spaces. We characterize the Jacobi–Dunkl convolution operators as those ones that commute with the Jacobi–Dunkl translations and with the Jacobi–Dunkl operators. Also we prove that the Jacobi–Dunkl convolution operators are hypercyclic and chaotic on the spaces under consideration and we give a universality property for the generalized heat equation associated with them. |
Databáze: | OpenAIRE |
Externí odkaz: |