On maps preserving operators of local spectral radius zero

Autor: A. Jaatit, M. Elhodaibi
Rok vydání: 2017
Předmět:
Zdroj: Linear Algebra and its Applications. 512:191-201
ISSN: 0024-3795
DOI: 10.1016/j.laa.2016.10.001
Popis: Let L ( X ) be the algebra of all bounded linear operators on a complex Banach space X. We describe surjective linear maps ϕ on L ( X ) that satisfy r ϕ ( T ) ( x ) = 0 ⟹ r T ( x ) = 0 for every x ∈ X and T ∈ L ( X ) . We also describe surjective linear maps ϕ on L ( X ) that satisfy r T ( x ) = 0 ⟹ r ϕ ( T ) ( x ) = 0 for every x ∈ X and T ∈ L ( X ) . Furthermore, we characterize maps ϕ (not necessarily linear nor surjective) on L ( X ) which satisfy r ϕ ( T ) − ϕ ( S ) ( x ) = 0 if and only if r T − S ( x ) = 0 for every x ∈ X and T , S ∈ L ( X ) .
Databáze: OpenAIRE