Estimation of Weibull Quantiles With Minimum Error in the Distribution Function

Autor: J. E. Angus, R. E. Schafer
Rok vydání: 1979
Předmět:
Zdroj: Technometrics. 21:367-370
ISSN: 1537-2723
0040-1706
DOI: 10.1080/00401706.1979.10489783
Popis: In this article the optimalpoint estimator of a Weibull quantile is investigated where optimality is defined in terms of the minimum mean square error of the predicted distribution function. The general form of the estimator is K1/ĉ where , ĉ are the maximum likelihood estimators of the scale (b) and shape (c) parameters respectively. The optimal K is given for quantiles 0.01, 0.05, 0.10, 0.90, 0.95, 0.99 for random samples of size n = 20(10)100(100)300. Also presented for each pair of the above quantiles and sample sizes is the estimator (of the form K1/ĉ which makes the predicted DF unbiased.
Databáze: OpenAIRE