Calcium Signaling is Involved in Negative Phototropism of Rice Seminal Roots
Autor: | Yi-wei Mo, Juan Chen, Hua-wei Xu |
---|---|
Rok vydání: | 2014 |
Předmět: |
chemistry.chemical_classification
Calcium channel food and beverages chemistry.chemical_element Plant Science Calcium Biology chemistry Biochemistry Auxin Second messenger system medicine Biophysics Verapamil Polar auxin transport Agronomy and Crop Science Phototropism Biotechnology Calcium signaling medicine.drug |
Zdroj: | Rice Science. 21:39-46 |
ISSN: | 1672-6308 |
Popis: | Calcium ions (Ca2+) act as an intracellular second messenger and affect nearly all aspects of cellular life. They are functioned by interacting with polar auxin transport, and the negative phototropism of plant roots is caused by the transport of auxin from the irradiated side to the shaded side of the roots. To clarify the role of calcium signaling in the modulation of rice root negative phototropism, as well as the relationship between polar auxin transport and calcium signaling, calcium signaling reagents were used to treat rice seminal roots which were cultivated in hydroculture and unilaterally illuminated at an intensity of 100–200 μmol/(m2·s) for 24 h. Negative phototropism curvature and growth rate of rice roots were both promoted by exogenous CaCl2 lower than 100 μmol/L, but inhibited by calcium channel blockers (verapamil and LaCl3), calcineurin inhibitor (chlorpromazine, CPZ), and polar auxin transport inhibitor (N-1-naphthylphthalamic acid, NPA). Roots stopped growing and negative phototropism disappeared when the concentrations increased to 100 μmol/L verapamil, 12.500 μmol/L LaCl3, 60 μmol/L CPZ, and 6 μmol/L NPA. Moreover, 100 μmol/L CaCl2 could relieve the inhibition of LaCl3, verapamil and NPA. The enhanced negative phototropism curvature was caused by the transportation of more auxin from the irradiated side to the shaded side in the presence of exogenous Ca2+. Calcium signaling plays a key role as a second messenger in the process of light signal regulation of rice root growth and negative phototropism. |
Databáze: | OpenAIRE |
Externí odkaz: |