Re-distribution of volatiles on the airless surface of the C-type carbonaceous asteroid Ryugu

Autor: Toru Matsumoto, Takaaki Noguchi, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hikaru Saito, Satoshi Hata, Dennis Harries, Aki Takigawa, Yuusuke Nakauchi, Shogo Tachibana, Tomoki Nakamura, Megumi Matsumoto, Hope Ishii, John Bradley, Kenta Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Pierre Beck, Thi Phan, Rolando Rebois, Neyda Abreu, Jennifer Gray, Thomas Zega, Pierre-Marie Zanetta, Michelle Thompson, Rhonda Stroud, Katherine Burgess, Brittany Cymes, John Bridges, Leon Hicks, Martin Lee, Luke Daly, Phil Bland, Michael Zolensky, David Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Tatsuhiro Michikami, Hisayoshi Yurimoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda
Rok vydání: 2023
DOI: 10.21203/rs.3.rs-2389559/v1
Popis: Volatile components are abundant in carbonaceous asteroids and can be important tracers for the evolution of asteroid surfaces interacting with the space environment, but their behavior on airless surfaces is poorly understood. Samples from the C-type carbonaceous asteroid Ryugu show dehydration of phyllosilicate, indicating ongoing surface modifications on the aqueously-altered asteroid. Here we report the analysis of Ryugu samples showing selective liberation of carbon, oxygen, and sulfur from iron-rich oxide, sulfide, and carbonate, which are major products of aqueous alteration. These mineral surfaces are decomposed to metallic iron, iron nitride, and magnesium-iron oxide. The modifications are most likely caused by solar wind implantation and micrometeorite impacts and are distinct indicators of surface space exposure over 103 years. Nitridation of metallic iron may require micrometeorites rich in solid nitrogen compounds, which implies that the amount of nitrogen available for planetary formation in the inner solar system is larger than previously recognized.
Databáze: OpenAIRE