Fractional Hermite-Hadamard Type Integral Inequalities for Functions Whose Modulus of the Mixed Derivatives are Co-Ordinated Extended (s1, m1)-(s2, m2)-Preinvex
Autor: | Badreddine Meftah, Meryem Benssaad, Sarra Ghomrani, Wahida Kaidouchi |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Real Analysis Exchange. 44:305 |
ISSN: | 0147-1937 |
DOI: | 10.14321/realanalexch.44.2.0305 |
Popis: | In this paper, we establish a new fractional identity involving a functions of two independent variables, and then we derive some fractional Hermite-Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated extended \( \left( s_{1},m_{1} \right) \)-\( \left( s_{2},m_{2}\right) \)-preinvex. |
Databáze: | OpenAIRE |
Externí odkaz: |