Fractional Hermite-Hadamard Type Integral Inequalities for Functions Whose Modulus of the Mixed Derivatives are Co-Ordinated Extended (s1, m1)-(s2, m2)-Preinvex

Autor: Badreddine Meftah, Meryem Benssaad, Sarra Ghomrani, Wahida Kaidouchi
Rok vydání: 2019
Předmět:
Zdroj: Real Analysis Exchange. 44:305
ISSN: 0147-1937
DOI: 10.14321/realanalexch.44.2.0305
Popis: In this paper, we establish a new fractional identity involving a functions of two independent variables, and then we derive some fractional Hermite-Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated extended \( \left( s_{1},m_{1} \right) \)-\( \left( s_{2},m_{2}\right) \)-preinvex.
Databáze: OpenAIRE