Existence of periodic waves for a perturbed quintic BBM equation
Autor: | Yulin Zhao, Lina Guo |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Abelian integral Singular perturbation Hamiltonian vector field Computer Science::Information Retrieval Applied Mathematics Picard–Fuchs equation 01 natural sciences Upper and lower bounds Quintic function 010101 applied mathematics symbols.namesake symbols Discrete Mathematics and Combinatorics 0101 mathematics Abelian group Hamiltonian (quantum mechanics) Analysis Mathematical physics |
Zdroj: | Discrete & Continuous Dynamical Systems - A. 40:4689-4703 |
ISSN: | 1553-5231 |
DOI: | 10.3934/dcds.2020198 |
Popis: | This paper dealt with the existence of periodic waves for a perturbed quintic BBM equation by using geometric singular perturbation theory. By analyzing the perturbations of the Hamiltonian vector field with a hyperelliptic Hamiltonian of degree six, we proved that periodic wave solutions persist for sufficiently small perturbation parameter. It is also proved that the wave speed \begin{document}$ c_0(h) $\end{document} is decreasing on \begin{document}$ h $\end{document} by analyzing the ratio of Abelian integrals, where \begin{document}$ h $\end{document} is the energy level value. Moreover, the upper and lower bounds of the limit wave speed are given. |
Databáze: | OpenAIRE |
Externí odkaz: |