Popis: |
Prediction of daily global solar radiation (H) with simple and high accurate models would be beneficial for solar energy conversion systems. In this paper, we proposed a hybrid machine learning methodology integrating two feature selection methods and a Bayesian optimization algorithm to predict H in the city of Fez, Morocco. First, we identified the most significant predictors using two methods of feature importance: Mean Decrease in Impurity (MDI) and Permutation Feature Importance (PFI). Then, based on the feature selection results, ten models were developed and compared: (1) five standalone machine learning models including Classification and Regression Trees (CART), Random Forests (RF), Bagged Trees Regression (BTR), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP); and (2) the same models tuned by the Bayesian optimization (BO) algorithm: CART-BO, RF-BO, BTR-BO, SVR-BO, and MLP-BO. Both MDI and PFI techniques revealed that extraterrestrial solar radiation and sunshine duration fraction were the most influential features. The BO approach improved the predictive accuracy of MLP, CART, SVR, and BTR models and prevented the CART model from overfitting. Among the studied models, the SVR-BO algorithm provided the best trade-off between prediction accuracy (RMSE=0.4473kWh/m²/day, MAE=0.3381kWh/m²/day, and R²=0.9465), stability, and computational cost. |