Bounds for Judicious Balanced Bipartitions of Graphs
Autor: | Fayun Cao, Yujiao Luo, Han Ren |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Graphs and Combinatorics. 34:1175-1184 |
ISSN: | 1435-5914 0911-0119 |
DOI: | 10.1007/s00373-018-1949-x |
Popis: | A bipartition of the vertex set of a graph is called balanced if the sizes of the sets in the bipartition differ by at most one. Bollob $$\acute{a}$$ s and Scott proved that every regular graph with m edges admits a balanced bipartition $$V_{1}$$ , $$V_{2}$$ of V(G) such that $$\max \{e(V_{1}), e(V_{2}) \}< \frac{m}{4}$$ . Only allowing $$\varDelta (G)-\delta (G)$$ =1 and 2, Yan and Xu, and Hu, He and Hao, respectively showed that a graph G with n vertices and m edges has a balanced bipartition $$V_{1}$$ , $$V_{2}$$ of V(G) such that $$\max \{e(V_{1}), e(V_{2}) \}\le \frac{m}{4}+O(n)$$ . In this paper, we give an upper bound for balanced bipartition of graphs G with $$\varDelta (G)-\delta (G)=t-1$$ , $$t\ge 2$$ is an integer. Our result extends the conclusions above. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |