Exponential Dichotomies and Fredholm Operators of Dynamic Equations on Time Scales

Autor: Le Huy Tien, Le Duc Nhien
Rok vydání: 2019
Předmět:
Zdroj: Applied Mathematics. 10:39-50
ISSN: 2152-7393
2152-7385
DOI: 10.4236/am.2019.101004
Popis: For time-varying non-regressive linear dynamic equations on a time scale with bounded graininess, we introduce the concept of the associative operator with linear systems on time scales. The purpose of this research is the characterizations of the exponential dichotomy obtained in terms of Fredholm property of that associative operator. Particularly, we use Perron’s method, which was generalized on time scales by J. Zhang, M. Fan, H. Zhu in [1], to show that if the associative operator is semi-Fredholm then the corresponding linear nonautonomous equation has an exponential dichotomy on both T + and T-. Moreover, we also give the converse result that the linear systems have an exponential dichotomy on both T + andT- then the associative operator is Fredholm on T.
Databáze: OpenAIRE